machine learning - Implementation of Gaussian Process Regression in Python y(n_samples, n_targets) -
i working on price data x = day1, day2, day3,...etc. on day1, have let's 15 price points(y), day2, have 30 price points(y2), , on.
when read documentation of gaussian process regression: http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.gaussianprocess.html#sklearn.gaussian_process.gaussianprocess.fit
y shape (n_samples, n_targets) observations of output predicted.
i assume n_targets refers price points observed on each day. however, number of price points on each day not same. wonder how deal case this?
many thanks!
i have made implementation of gaussian process regression in python using numpy. aim understand implementing it. may helpful you.
https://github.com/muatik/machine-learning-examples/blob/master/gaussianprocess2.ipynb
import numpy np matplotlib import pyplot plt import seaborn sns sns.set(color_codes=true) %matplotlib inline class gp(object): @classmethod def kernel_bell_shape(cls, x, y, delta=1.0): return np.exp(-1/2.0 * np.power(x - y, 2) / delta) @classmethod def kernel_laplacian(cls, x, y, delta=1): return np.exp(-1/2.0 * np.abs(x - y) / delta) @classmethod def generate_kernel(cls, kernel, delta=1): def wrapper(*args, **kwargs): kwargs.update({"delta": delta}) return kernel(*args, **kwargs) return wrapper def __init__(self, x, y, cov_f=none, r=0): super().__init__() self.x = x self.y = y self.n = len(self.x) self.r = r self.sigma = [] self.mean = [] self.cov_f = cov_f if cov_f else self.kernel_bell_shape self.setup_sigma() @classmethod def calculate_sigma(cls, x, cov_f, r=0): n = len(x) sigma = np.ones((n, n)) in range(n): j in range(i+1, n): cov = cov_f(x[i], x[j]) sigma[i][j] = cov sigma[j][i] = cov sigma = sigma + r * np.eye(n) return sigma def setup_sigma(self): self.sigma = self.calculate_sigma(self.x, self.cov_f, self.r) def predict(self, x): cov = 1 + self.r * self.cov_f(x, x) sigma_1_2 = np.zeros((self.n, 1)) in range(self.n): sigma_1_2[i] = self.cov_f(self.x[i], x) # sigma_1_2 * sigma_1_1.i * (y.t -m) # m 0 m_expt = (sigma_1_2.t * np.mat(self.sigma).i) * np.mat(self.y).t # sigma_expt = cov - (sigma_1_2.t * np.mat(self.sigma).i) * sigma_1_2 sigma_expt = cov + self.r - (sigma_1_2.t * np.mat(self.sigma).i) * sigma_1_2 return m_expt, sigma_expt @staticmethod def get_probability(sigma, y, r): multiplier = np.power(np.linalg.det(2 * np.pi * sigma), -0.5) return multiplier * np.exp( (-0.5) * (np.mat(y) * np.dot(np.mat(sigma).i, y).t)) def optimize(self, r_list, b_list): def cov_f_proxy(delta, f): def wrapper(*args, **kwargs): kwargs.update({"delta": delta}) return f(*args, **kwargs) return wrapper best = (0, 0, 0) history = [] r in r_list: best_beta = (0, 0) b in b_list: sigma = gaus.calculate_sigma(self.x, cov_f_proxy(b, self.cov_f), r) marginal = b* float(self.get_probability(sigma, self.y, r)) if marginal > best_beta[0]: best_beta = (marginal, b) history.append((best_beta[0], r, best_beta[1])) return sorted(history)[-1], np.mat(history)
now can try follows:
# setting gp x = np.array([-2, -1, 0, 3.5, 4]); y = np.array([4.1, 0.9, 2, 12.3, 15.8]) gaus = gp(x, y) x_guess = np.linspace(-5, 16, 400) y_pred = np.vectorize(gaus.predict)(x_guess) plt.scatter(x, y, c="black") plt.plot(x_guess, y_pred[0], c="b") plt.plot(x_guess, y_pred[0] - np.sqrt(y_pred[1]) * 3, "r:") plt.plot(x_guess, y_pred[0] + np.sqrt(y_pred[1]) * 3, "r:")
the effects of regularization parameter
def create_case(kernel, r=0): x = np.array([-2, -1, 0, 3.5, 4]); y = np.array([4.1, 0.9, 2, 12.3, 15.8]) gaus = gp(x, y, kernel, r=r) x_guess = np.linspace(-4, 6, 400) y_pred = np.vectorize(gaus.predict)(x_guess) plt.scatter(x, y, c="black") plt.plot(x_guess, y_pred[0], c="b") plt.plot(x_guess, y_pred[0] - np.sqrt(y_pred[1]) * 3, "r:") plt.plot(x_guess, y_pred[0] + np.sqrt(y_pred[1]) * 3, "r:") plt.figure(figsize=(16, 16)) i, r in enumerate([0.0001, 0.03, 0.09, 0.8, 1.5, 5.0]): plt.subplot("32{}".format(i+1)) plt.title("kernel={}, delta={}, beta={}".format("bell shape", 1, r)) create_case( gp.generate_kernel(gp.kernel_bell_shape, delta=1), r=r)
plt.figure(figsize=(16, 16)) i, d in enumerate([0.05, 0.5, 1, 3.2, 5.0, 7.0]): plt.subplot("32{}".format(i+1)) plt.title("kernel={}, delta={}, beta={}".format("kernel_laplacian", d, 1)) create_case( gp.generate_kernel(gp.kernel_bell_shape, delta=d), r=0)
Comments
Post a Comment